**Binomial Distribution**

The binomial distribution is used when you have only two outcomes, and the outcomes are independent. So, for example, you can have conforming or non-conforming output in a process, and you want to count the number of non-conforming.

**Example:** I want to reply to the question, “If the probability of non-conforming is P=0,3, what’s the probability of having 10 non-conforming units if I will produce 20 units? If I look at the example graph in the ** image1**, I have less than 0,05, which is less than 5% of probability.

In ** image1.1** you can look at the probability formula of the binomial distribution.

where:

**n**is the sample size;**x**is the number of success;**p**is the probability of success ;**q**is the probability of non-success that is 1-p;

Poisson Distribution

The Poisson distribution is used when you don’t want to count the non-conforming unit, but you want to calculate the total number of non-conformity (because maybe one unit has more than one problem). In this case, you need to know the mean of the error on the other unit (Lamba, which is also equal to the variance) and the number of mistakes you want to occur on the next unit.

Example: if the mean of non-conforming on the other unit is 5, what probability has 0 non-conformities on the following units? If we look at the, the probability is near to 0.01, that is 1%image1

You can look at the probability formula of the Poisson distribution formula in the *image2.1*

where:

**Lamba**is the mean;**x**is the number of successes.

Hypergeometric distribution

The Hypergeometric distribution measures the probability of having a certain number of successes in **n **extraction without replacement. In this case, you have two different outcomes, and each outcome of the experiment depends on the other. Although you want to measure the probability of success like the binomial distribution, the difference is that in the hypergeometric, the probability of success is not the same for each extraction.

Example:if you have 70units in your storage. Your storage has m=20 defective units and N-m=50 non-defective. If you randomly draw units from the storage without replacement, what's the probability of getting x=20 faulty units extracting n=30 elements? If we look atit's near 0.10, which is 10%.image3,

You can look at the probability formula of the Hypergeometric distribution in the *image3.1*

where:

**N**is the entire population size;**n**is the number of unit extracted from the population;**m**is the number of defective in the entire population;**x**is the number of defective in the sample.

Remember that the combination formula is the one in *image3.2*

**Geometric distribution**

The Geometric distribution is used when you have two outcomes for a trial, like conforming and non-conforming. It represents the number of failures before getting success. The outcome of each trial must be independent. A geometric distribution is like a succession of Binomial experiments.

Example:if your selecting a candidate for a work, and the probability of choose the correct one is p=0,5, what's is the probability after 2 job interview? if you loog at thethe probability is 0,25image4

In ** image 4.1, **you can look at the formula of the probability of the geometric distribution where

**P**is the probability of success and

**x**is the number of tries: